

LIBERTAS

JUSTITIA

VERITAS

Purification and identification of the myostatin inhibitory peptides from mealworm (T*enebrio molitor* larvae) protein hydrolysate in C2C12 cells

Eunyoung Oh* ^{1,2}, Hyeon Soo Kim³, Yookyung Kim¹

¹ Department of Human Ecology (Food Science and Nutrition), Graduate School, Korea University, Seoul 136-701, Republic of Korea ²Interdisciplinary Program in Sustainable Living System, Graduate School, Korea University, Seoul 136-701, Republic of Korea ³Department of Anatomy, Korea University College of Medicine, Korea University, Seoul 136-701, Republic of Korea

Introduction and Objective

Mealworms (*Tenebrio molitor* larvae) are considered a highly nutritious and sustainable protein source. **Bioactive peptides** produced from protein hydrolysis have recently gained interest as alternative chemotherapeutic agents due to their potential to improve physiological activities. Muscle atrophy, wasting or loss of muscle mass, is a prevalent problem limiting physical activity and reducing the overall quality of life. Nonetheless, there are currently few investigations on natural agents preventing **muscle atrophy**. In this study, two potential peptides, Phe-Asp-Lys-Tyr (**FDKY**) and Phe-Asp-Arg-Leu (**FDRL**), were purified and identified from mealworm protein hydrolysate (MPH), and their inhibitory potentials of **myostatin**, a major negative regulator of skeletal muscle, in C2C12 cells were determined.

Figure 3. (A) Heat-map analysis of amino acid, BCAAs ratio of (B) D fractions, and (C) C fractions

Keywords: Mealworm, Bioactive peptides, Muscle atrophy, Myostatin

Materials and Methods

MPI: mealworm protein isolate; MPH: mealworm protein hydrolysate; MT: mealworm protein hydrolysate fraction > 10kDa; D1-4: anion-exchange chromatography fractions of MT; C1-5: reverse-phase chromatography fractions of D1

^{a-d} Different superscripts indicate significant differences according to Duncan's multiple range test (p < 0.05).

Statistical significance was determined by Student's *t*-test compared to the control (CON; no treatment) group (*p < 0.05, **p < 0.01, and ***p < 0.001). Statistical significance was determined by Student's *t*-test, comparing to an upper-level fraction (*p < 0.05, **p < 0.01).

Summary and Conclusions

• D1 and C3, which have the most significant potential for myostatin inhibition in each fractionation step, had the highest branched chain to total amino acid ratios.

 Table 1. Best peptide sequence

No.	Best Sequence	Modifications	Original protein
1	GSYSLVDPDGTRR		larval cuticle protein A3A-like
2	SYSLVDPDGTRR		larval cuticle protein A3A-like
3	NGFNAVVR	Deamidated(N)@1, Deamidated(N)@4	hypothetical protein GEV33_008419
4	FDKY		86 kDa early-staged encapsulation inducing protein
5	FDRL		86 kDa early-staged encapsulation inducing protein
6	SNGFGEIK	Deamidated(N)@2	86 kDa early-staged encapsulation inducing protein
7	GVQDPLTGDVK		hypothetical protein GEV33_008419
			Patent pending

- Among all the peptides, only the treatment of FDKY and FDRL significantly lowered the luciferase activity compared to the control group (no treatment) in a dose-dependent manner. FDKY treatment also decreased myostatin mRNA expression levels compared to the control group.
- The bioactive peptides from MPH could be an attractive natural agent that can be used as a drug or functional food ingredient to prevent muscle atrophy.

Acknowledgement	AUTHOR INFORMATION	
This research was supported by the National Institute of Agricultural Sciences, RDA, Republic	 Ph.D Candidate Eunyoung Oh: oheuy0725@korea.ac.kr (Correspondence) Professor Yookyung Kim: 	
of Korea (Project No.PJ01591202).	yookyung_kim@korea.ac.kr	IPS 2023